Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Електротехніка і Еле...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Електротехніка і Електромеханіка
Article . 2021 . Peer-reviewed
License: CC BY NC
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

On the solution of the problem of synthesis of the control system for the process of dosed feed of electrode wire for arc welding equipment

Authors: V.A. Lebedev;

On the solution of the problem of synthesis of the control system for the process of dosed feed of electrode wire for arc welding equipment

Abstract

Goal. Refinement of the methodology for the development of an effective control system for an electric drive with controlled relay-type regulators for organizing a metered feed of an electrode wire using the parameters of the arc process with the possibility of using it in design practice and practice of technological application. Methodology. The proposed method for the mathematical description (mathematical model) of the system of the developed structure electric drive - arc process with current feedback of welding with a variable structure device is based on the theory of automatic control as applied to nonlinear elements, the application of the theory of operational calculus. At the same time, a selection and description of a nonlinear node in the feedback circuit in the form of a relay element with a certain structure and subsequent linearization of this element was made. As an electric motor of the electrode wire feeder, a new development of a specialized valve electric motor is used, which is used in the system with a microprocessor controller. Results. Due to the presence of a substantially nonlinear link, the calculation of the valve electric drive system – the arc process can be found on the basis of a system of nonlinear differential equations, which is practically impossible for practical application. In this work, these complications are overcome on the basis of a rational choice of the description of the nonlinear link, its harmonic linearization and obtaining on this basis a mathematical description of the system, from which, using the methodology of operational calculus, the relations necessary for calculating the parameters of the system are determined in analytical form. Originality. The problem of calculating a rather complex problem of mathematical description of the valve electric drive system – a technological link in the form of an arc process with a substantially nonlinear link in the feedback circuit in the work is solved with the effective use of a set of methodological methods, which include as a means of representing individual links, including nonlinear links selected simplifications and solutions of the obtained differential equations using original methods of operational calculus. The proposed method (mathematical model) is tested in two directions – oscillography of a real system, as well as system simulation. Practical significance. Using the developed methods for describing the control system, it is possible to calculate its characteristics and, on their basis, select the parameters for setting the electric drive controller, which allows, without additional experimental research, to obtain the necessary character of the transfer of electrode metal, and, consequently, the quality of the result of the arc process.

Keywords

calculation, расчёт, electrode wire, mathematical description, TK1-9971, математическое описание, welding process, система управления, pulse feed, импульсная подача, электродная проволока, Electrical engineering. Electronics. Nuclear engineering, control system, сварочный процесс

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 3
    download downloads 3
  • 3
    views
    3
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
0
Average
Average
Average
3
3
gold