Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Publications Open Re...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.23919/aeit....
Article . 2019 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Optimal Bidding Zone Configuration: Investigation on Model-based Algorithms and their Application to the Italian Power System

Authors: Michi L.; Ilea V.; Caprabianca M.; Nuzzo G.; Colella P.; Russo A.; Quaglia F.; +7 Authors

Optimal Bidding Zone Configuration: Investigation on Model-based Algorithms and their Application to the Italian Power System

Abstract

This paper focuses on model-based approaches that could be adopted for identifying alternative configurations to be considered in a bidding zone review process. Considering the complexity of this task, automated procedures can significantly help transmission system operators, allowing them to assess a large amount of possible system conditions and future scenarios. These methodologies are based on a 2-step approach: in the first step relevant nodal quantities are computed; then, in the second step, nodes are aggregated into zones using proper clustering algorithms. This paper starts with a critical review of the existing proposals, highlighting advantages and disadvantages of each of them, focusing on their practical implementation on a wide-area power system and in the context of the current electricity market framework. Some promising options are then identified for the Italian Power System case. In particular, an improved security constrained optimal power flow algorithm for computing Locational Marginal Prices (LMPs) and for identifying relevant critical branches (to be considered in the Power Transfer Distribution Factors computation) has been developed. Then, a selected set of clustering algorithms has been implemented and tested to check their effectiveness in forming LMP-based bidding zones.

Keywords

bidding zones; locational marginal process; model-based; power transfer distribution factors, locational marginal process, model-based, bidding zones, power transfer distribution factors

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Top 10%
Average
Top 10%
Green