Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Annales de l'Institu...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Annales de l'Institut Henri Poincaré. C, Analyse non Linéaire
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article
Data sources: zbMATH Open
https://dx.doi.org/10.48550/ar...
Article . 2018
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Well posedness of nonlinear parabolic systems beyond duality

Authors: Jan Burczak; Jan Burczak; Sebastian Schwarzacher; Miroslav Bulíček;

Well posedness of nonlinear parabolic systems beyond duality

Abstract

We develop a methodology for proving well-posedness in optimal regularity spaces for a wide class of nonlinear parabolic initial–boundary value systems, where the standard monotone operator theory fails. A motivational example of a problem accessible to our technique is the following system \partial _{t}u−\mathrm{div}\left(\nu (|\mathrm{∇}u|)\mathrm{∇}u\right) = −\mathrm{div}f with a given strictly positive bounded function \nu , such that \mathrm{\lim }_{k\rightarrow \infty }⁡\nu (k) = \nu _{\infty } and f \in L^{q} with q \in (1,\infty ) . The existence, uniqueness and regularity results for q \geq 2 are by now standard. However, even if a priori estimates are available, the existence in case q \in (1,2) was essentially missing. We overcome the related crucial difficulty, namely the lack of a standard duality pairing, by resorting to proper weighted spaces and consequently provide existence, uniqueness and optimal regularity in the entire range q \in (1,\infty ) . Furthermore, our paper includes several new results that may be of independent interest and serve as the starting point for further analysis of more complicated problems. They include a parabolic Lipschitz approximation method in weighted spaces with fine control of the time derivative and a theory for linear parabolic systems with right hand sides belonging to Muckenhoupt weighted L^{q} spaces.

Keywords

35D99, 35K51, 35K61, 35A01, 35A02, parabolic Lipschitz approximation, existence, uniqueness, Existence problems for PDEs: global existence, local existence, non-existence, Uniqueness problems for PDEs: global uniqueness, local uniqueness, non-uniqueness, Muckenhoupt weights, Mathematics - Analysis of PDEs, very weak solution, FOS: Mathematics, weighted estimates, Initial-boundary value problems for second-order parabolic systems, nonlinear parabolic systems, Nonlinear initial, boundary and initial-boundary value problems for nonlinear parabolic equations, Analysis of PDEs (math.AP)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Top 10%
Average
Average
Green
gold
Related to Research communities