Downloads provided by UsageCounts
The presented paper is focused on satellite image analysis using GRASS GIS. The aim is to perform comparative analysis of the land cover changes in Tokyo metropolitan area through spatial analysis. Data include multi-temporal Landsat TM satellite images on 2002, 2006 and 2011. The images were captured from GloVis USGS service and imported to GRASS GIS via GDAL (utilities gdalwarp, r.in.gdal, gdalinfo). The methodology is based on GRASS GIS. The technique includes raster modules (d.rast, r.colors, g.region) and modules of image processing (i.landsat.rgb, i.class). Color composites were created by modules d.rgb, r.composite and auxiliary modules for visualization (d.rast, r.colors, etc). Spectral signatures were generated in an image using 'i.cluster' algorithm and 'i.group' for clustering data. The classification was done by Maximum Likelihhood classifier 'i.maxlik'. The results show variations in land cover types for 2001, 2006 and 2011, which also resulted in the automated grouping pixels into 7, 10 and 6 classes, respectively. The paper demonstrated technical functionality of the GRASS GIS applied for multi-temporal image processing aimed at land cover types / change analysis using shell scripting approach.
Systèmes d'information géographique, Télédétection, Techniques d'imagerie et traitement d'images, Kartographie, Japan, Géographie physique, Océanographie physique et chimique, cartography, GRASS GIS, Landsat TM, image processing, raster, cartography, mapping, mapping, Géologie, GRASS-GIS, Tokyo, Géomorphologie et orographie, grass gis, Géodésie, Kartierung, QB275-343, Méthodes mathématiques et quantitatives, raster, Programmation et méthodes de simulation, Méthodologie de la recherche scientifique, artificial intelligence, image processing, Sciences de la terre et du cosmos, automatization, machine learning, Landsat TM, Raster, landsat tm, GRASS GIS, Bildverarbeitung, Programmation du calcul numérique, Geodesy, Sciences exactes et naturelles, Géodynamique et tectonique
Systèmes d'information géographique, Télédétection, Techniques d'imagerie et traitement d'images, Kartographie, Japan, Géographie physique, Océanographie physique et chimique, cartography, GRASS GIS, Landsat TM, image processing, raster, cartography, mapping, mapping, Géologie, GRASS-GIS, Tokyo, Géomorphologie et orographie, grass gis, Géodésie, Kartierung, QB275-343, Méthodes mathématiques et quantitatives, raster, Programmation et méthodes de simulation, Méthodologie de la recherche scientifique, artificial intelligence, image processing, Sciences de la terre et du cosmos, automatization, machine learning, Landsat TM, Raster, landsat tm, GRASS GIS, Bildverarbeitung, Programmation du calcul numérique, Geodesy, Sciences exactes et naturelles, Géodynamique et tectonique
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
| views | 2 | |
| downloads | 1 |

Views provided by UsageCounts
Downloads provided by UsageCounts