Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

РАЗВИТИЕ КРЕАТИВНОСТИ СТУДЕНТОВ ПРИ ИССЛЕДОВАНИИ ЗАПОЛНЯЮЩИХ МНОЖЕСТВ ЖЮЛИА С ПОМОЩЬЮ МАТЕМАТИЧЕСКИХ МЕТОДОВ И ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ

DEVELOPMENT OF THE CREATIVITY OF STUDENTS AT THE STUDY OF COMPLETE SETS OF JULIA WITH MATHEMATICAL METHODS AND INFORMATION TECHNOLOGIES
Authors: A.A. Piguzov; V.S. Sekovanov; V.A. Ivkov;

РАЗВИТИЕ КРЕАТИВНОСТИ СТУДЕНТОВ ПРИ ИССЛЕДОВАНИИ ЗАПОЛНЯЮЩИХ МНОЖЕСТВ ЖЮЛИА С ПОМОЩЬЮ МАТЕМАТИЧЕСКИХ МЕТОДОВ И ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ

Abstract

In the article, the formation of the creative qualities of students is analyzed using the example of the Mandelbrot set and the Julia sets. The Mandelbrot sets and filling Julia sets are currently used in various fields. The boundaries of these sets have a fractal structure and data sets allow you to build adequate mathematical models of objects and processes. For example, Julia sets are used in the study of phase transitions in physics, and Mandelbrot sets for the creation of mathematical models in the economy. The study of Mandelbrot sets and Julia sets is inextricably linked with mathematical methods and information and communication technologies, which develops in students the most important creative qualities, such as flexibility and critical thinking. Studies of Julia's filling sets are impossible without deep integration links between mathematics and computer science. The study of these sets positively influences the increase of motivation of trainees to the study of mathematics and computer science. The article demonstrates the program that demonstrates this relationship. An algorithm for constructing a Mandelbrot set of an arbitrary natural degree is given, and the symmetry of some of them with respect to the real and imaginary axes for certain powers of polynomials is noted.

В статье на примере алгоритмов построения множеств Мандельброта и множеств Жюлиа анализируется формирование креативных качеств студентов. Множества Мандельброта и заполняющие множества Жюлиа в настоящее время используются в различных областях. Границы данных множеств имеют фрактальную структуру и данные множества позволяют строить адекватные математические модели объектов и процессов. Например, множества Жюлиа используются в исследовании фазовых переходов в физике, а множества Мандельброта для создания математических моделей в экономике. Изучение множеств Мандельброта и множеств Жюлиа неразрывно связано с математическими методами и информационными и коммуникационными технологиями, что развивает у обучаемых такие важнейшие креативные качества, как гибкость и критичность мышления. Исследования заполняющих множеств Жюлиа невозможно без глубоких интеграционных связей между математикой и информатикой. Исследование данных множеств положительно влияет на повышение мотивации у обучаемых к изучению математики и информатики. В статье разработана демонстрирующая данную связь программа. Приведен алгоритм построения множества Мандельброта произвольной натуральной степени и отмечена симметричность некоторых из них относительно вещественной и мнимой осей при определенных степенях многочленов.

Related Organizations
Keywords

фрактал, creative quality, креативное качество, алгоритмы построения множеств Жюлиа, the Mandelbrot set, iteration, algorithms for constructing Julia sets, Creativity, множество Жюлиа, информационные технологии, fractal, Креативность, the Julia set, итерация, множество Мандельброта, flexibility of thinking, гибкость мышления, Information Technology

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!