Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Accessarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2022
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Hybrid Three-Staged, Short-Term Wind-Power Prediction Method Based on SDAE-SVR Deep Learning and BA Optimization

Authors: Ruiqin Duan; Xiaosheng Peng; Cong Li; Zimin Yang; Yan Jiang; Xiufeng Li; Shuangquan Liu;

A Hybrid Three-Staged, Short-Term Wind-Power Prediction Method Based on SDAE-SVR Deep Learning and BA Optimization

Abstract

Wind power prediction (WPP) is necessary to the safe operation and economic dispatch of power systems. In order to improve the prediction accuracy of WPP, in this paper we propose a three-step model named SDAE-SVR-BA to be applied in short-term WPP based on stacked-denoising-autoencoder (SDAE) feature processing, bat algorithm (BA) optimization and support vector regression (SVR). First, we preprocessed the original NWP data input into the SDAE-SVR-BA model to adapt to the training and prediction of the proposed model. Second, we input the preprocessed features into the SDAE network, whose parameters are optimized by BA to obtain the depth-mapping features. Finally, we input the features of SDAE network mapping into SVR, whose parameters are optimized by BA for prediction, so as to obtain the SDAE-SVR-BA model. In this paper, we used BA during the training process to optimize the number of hidden layers and hidden layer nodes of SDAE, the penalty factor parameter C and the kernel function radius g of the SVR model. Additionally, we verified the model with a wind farm example and compared it to the traditional model. Based on the verification data applied in this article, in a forecast for the next twelve hours, the normalized root means square error (NRMSE) of SDAE-SVR was 11.97% and the NRMSE of SDAE-SVR-BA model was 11.54%, reduced by 1.24% compared with SDAE, which demonstrates the effectiveness of the proposed method.

Keywords

bat optimization algorithm, Stack denoising autoencoder, Electrical engineering. Electronics. Nuclear engineering, wind power prediction, TK1-9971

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Top 10%
Average
Top 10%
gold