Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1109/aicas5...
Article . 2023 . Peer-reviewed
License: STM Policy #29
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
HAL-CEA
Conference object . 2023
Data sources: HAL-CEA
https://dx.doi.org/10.5167/uzh...
Other literature type . 2023
Data sources: Datacite
https://dx.doi.org/10.48550/ar...
Article . 2023
License: CC BY
Data sources: Datacite
versions View all 12 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Synaptic metaplasticity with multi-level memristive devices

Authors: D’Agostino, S; Moro, F; Hirtzlin, T; Arcamone, J; Castellani, N; Querlioz, D; Payvand, Melika; +1 Authors

Synaptic metaplasticity with multi-level memristive devices

Abstract

Deep learning has made remarkable progress in various tasks, surpassing human performance in some cases. However, one drawback of neural networks is catastrophic forgetting, where a network trained on one task forgets the solution when learning a new one. To address this issue, recent works have proposed solutions based on Binarized Neural Networks (BNNs) incorporating metaplasticity. In this work, we extend this solution to quantized neural networks (QNNs) and present a memristor-based hardware solution for implementing metaplasticity during both inference and training. We propose a hardware architecture that integrates quantized weights in memristor devices programmed in an analog multi-level fashion with a digital processing unit for high-precision metaplastic storage. We validated our approach using a combined software framework and memristor based crossbar array for in-memory computing fabricated in 130 nm CMOS technology. Our experimental results show that a two-layer perceptron achieves 97% and 86% accuracy on consecutive training of MNIST and Fashion-MNIST, equal to software baseline. This result demonstrates immunity to catastrophic forgetting and the resilience to analog device imperfections of the proposed solution. Moreover, our architecture is compatible with the memristor limited endurance and has a 15x reduction in memory

AICAS2023 proceedings (oral presentation and discussion already done on 12/06/2023)

Keywords

FOS: Computer and information sciences, 1707 Computer Vision and Pattern Recognition, Computer Science - Artificial Intelligence, 1708 Hardware and Architecture, 2208 Electrical and Electronic Engineering, [SPI.NANO] Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics, Computer Science - Neural and Evolutionary Computing, 1702 Artificial Intelligence, 1710 Information Systems, Artificial Intelligence (cs.AI), [SCCO.COMP] Cognitive science/Computer science, 570 Life sciences; biology, Neural and Evolutionary Computing (cs.NE), 10194 Institute of Neuroinformatics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green