
This article describes all injective endomorphisms of the classical Toeplitz algebra. Their connection with endomorphisms of the algebra of continuous functions on the unit circle and with coverings over the unit circle was considered. It was shown that each non-unitary isometry V in the Toeplitz algebra determines the identity preserving endomorphism, as well as the class of its compact perturbations, i.e., identity non-preserving endomorphisms, defined by partial isometries {V P}, where P is a projection of finite codimension. The notions of T -equivalence of endomorphisms and T -equivalence up to a compact perturbation were introduced. An example was provided wherein the isometries are unitarily equivalent but the corresponding endomorphisms fall into different equivalence classes. Of all endomorphisms, the ones belonging to the class of Blaschke endomorphisms, which are analogous to endomorphisms of the discalgebra and generate unbranched coverings over the unit circle, were singled out.
automorphism, c<sup>∗</sup> -алгебра, QA1-939, fredholm operator, endomorphism, toeplitz algebra, finite blaschke product, partial isometry, Mathematics
automorphism, c<sup>∗</sup> -алгебра, QA1-939, fredholm operator, endomorphism, toeplitz algebra, finite blaschke product, partial isometry, Mathematics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
