
Machine learning (ML) can be a powerful tool to expedite materials research, but the deployment for experimental research is often hindered by data scarcity and model uncertainty. An human‐in‐the‐loop procedure to tailor the implementation of ML for multicriteria optimization is described. The effectiveness of this procedure in the development of a nafion‐based membrane electrode assembly for electrochemical CO2 reduction reaction (CO2RR) into CO for two targets is demonstrated: energy efficiency (EE) and partial current density for CO2RR (). Model‐agnostic nonlinear correlation analyses identify the 11 features relevant to those targets. The three studied decision tree‐based ML models yield similar cross‐validation errors so an ad hoc feature analysis of the models is done with SHapley Additive exPlanations and nonlinear correlation techniques. The predicted EE‐ space and the functional dependency of the predictions are investigated to assess model plausibility. A genetic algorithm with CO production cost as the final target with subsequent validation experiments of candidate conditions is devised. The model chosen through ad hoc analysis yields the highest accuracy and the only one that can locate the Pareto front with a single round of experiments, demonstrating how appropriate model selection through careful inspection can greatly accelerate the research cycle.
correlation analyses, SHapley Additive exPlanations, Computer engineering. Computer hardware, Artificial Intelligence and Robotics, 670, Control engineering systems. Automatic machinery (General), carbon dioxide reduction reaction, genetic algorithms, TK7885-7895, machine learning, Materials Science and Engineering, TJ212-225
correlation analyses, SHapley Additive exPlanations, Computer engineering. Computer hardware, Artificial Intelligence and Robotics, 670, Control engineering systems. Automatic machinery (General), carbon dioxide reduction reaction, genetic algorithms, TK7885-7895, machine learning, Materials Science and Engineering, TJ212-225
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
