Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Rowan University: Ro...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Advanced Intelligent Systems
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Advanced Intelligent Systems
Article . 2023
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Physics‐Based Human‐in‐the‐Loop Machine Learning Combined with Genetic Algorithm Search for Multicriteria Optimization: Electrochemical CO2 Reduction Reaction

Authors: Naohiro Fujinuma; Samuel E. Lofland;

Physics‐Based Human‐in‐the‐Loop Machine Learning Combined with Genetic Algorithm Search for Multicriteria Optimization: Electrochemical CO2 Reduction Reaction

Abstract

Machine learning (ML) can be a powerful tool to expedite materials research, but the deployment for experimental research is often hindered by data scarcity and model uncertainty. An human‐in‐the‐loop procedure to tailor the implementation of ML for multicriteria optimization is described. The effectiveness of this procedure in the development of a nafion‐based membrane electrode assembly for electrochemical CO2 reduction reaction (CO2RR) into CO for two targets is demonstrated: energy efficiency (EE) and partial current density for CO2RR (). Model‐agnostic nonlinear correlation analyses identify the 11 features relevant to those targets. The three studied decision tree‐based ML models yield similar cross‐validation errors so an ad hoc feature analysis of the models is done with SHapley Additive exPlanations and nonlinear correlation techniques. The predicted EE‐ space and the functional dependency of the predictions are investigated to assess model plausibility. A genetic algorithm with CO production cost as the final target with subsequent validation experiments of candidate conditions is devised. The model chosen through ad hoc analysis yields the highest accuracy and the only one that can locate the Pareto front with a single round of experiments, demonstrating how appropriate model selection through careful inspection can greatly accelerate the research cycle.

Related Organizations
Keywords

correlation analyses, SHapley Additive exPlanations, Computer engineering. Computer hardware, Artificial Intelligence and Robotics, 670, Control engineering systems. Automatic machinery (General), carbon dioxide reduction reaction, genetic algorithms, TK7885-7895, machine learning, Materials Science and Engineering, TJ212-225

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Top 10%
Average
Average
Green
gold