Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Usiena air - Univers...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1109/euc.20...
Article . 2015 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Scalable Embedded Systems: Towards the Convergence of High-Performance and Embedded Computing

Authors: Giorgi, Roberto;

Scalable Embedded Systems: Towards the Convergence of High-Performance and Embedded Computing

Abstract

Embedded System toolchains are highly customized for a specific System-on-Chip (SoC). When the application needs more performance, the designer is typically forced to adopt a new SoC and possibly another toolchain. The rationale for not scaling performance by using, e.g., two SoCs, is that maintining most of the operations on-chip may allow for higher energy efficiency. We are exploring the feasibility and trade-offs of designing and manufacturing a new Single Board Computer (SBC) that could serve flexibly for a number of current and future applications, by allowing scalability through clusters of SBCs while keeping the same programming model for the SBC. This board is based on FPGAs and embedded processors, and its key points are: i) a fast custom interconnect for board-to-board communication and ii) an easily programmable environment which would allow both the off-loading of code into accelerators (either soft-IP blocks or hard-IP blocks) and, at the same time, the distribution of computation across boards. A key challenge to successfully deploying this paradigm is to properly distribute the threads across several boards without the explicit intervention of the programmer. In this paper we describe how to dynamically and efficiently distribute the computational threads in symbiosis with an appropriate memory model to allow the system scalability, so that we can double the performance by simply connecting two boards without i) changing the basic hardware components (e.g., to a different System-On-Chip) and ii) changing the programming model to follow the vendor specific toolchain. Our approach is to reduce data movement across boards. Our initial experiments have confirmed the feasibility of our approach.

Related Organizations
Keywords

Cyber-Physical Systems; Reconfigurable Systems; Cluster Programming; FPGA Programming; Distributed Shared Memory; Programming Model; Performance Evaluation

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    14
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
14
Average
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!