
Nous nous intéressons à une méthodologie évolutive, flexible et modulaire, pour la modélisation et l'analyse des performances des systèmes stochastiques à événements discrets (SDES). En ce sens, nous proposons une approche modulaire pour chronométrer les SDES non markoviens exprimés sous la forme d'une composition parallèle de modules qui interagissent les uns avec les autres par le biais d'événements. Nous montrons comment la distribution générale pour les durées de vie des événements peut être mise en œuvre systématiquement en couplant les modules de synchronisation au modèle du système. En conséquence, ce mécanisme de couplage préserve la modularité, conduisant à un modèle markovien compact exprimé en termes de modules flexibles. Par conséquent, la méthodologie nous permet d'écrire l'ensemble du modèle SDES en tant que composition du modèle système et du modèle temporel, offrant flexibilité et évolutivité dans la conception de la modélisation, car nous pouvons modifier les modules individuellement en fonction des intérêts du concepteur. De plus, à partir de l'ensemble du modèle markovien SDES, nous montrons comment effectuer l'analyse du modèle à travers l'approche analytique, ainsi qu'à travers la simulation informatique de Monte Carlo. En tant qu'application, nous présentons un exemple numérique de calcul du taux d'abandon pour un réseau de service avec un temps de service général utilisant à la fois des modèles analytiques et de simulation informatique.
Estamos interesados en una metodología escalable, flexible y modular, para el modelado y análisis de rendimiento de sistemas estocásticos de eventos discretos (SDES). En este sentido, proponemos un enfoque modular para la temporización de SDES no markovianas expresadas como una composición paralela de módulos que interactúan entre sí a través de eventos. Mostramos cómo se puede implementar sistemáticamente la distribución general para la vida útil de los eventos acoplando los módulos de temporización al modelo del sistema. Como resultado, este mecanismo de acoplamiento preserva la modularidad, lo que lleva a un modelo markoviano compacto expresado en términos de módulos flexibles. Por lo tanto, la metodología nos permite escribir todo el modelo SDES como una composición del modelo de sistema y el de temporización, dando flexibilidad y escalabilidad en el diseño de modelado, ya que podemos modificar los módulos individualmente de acuerdo con los intereses del diseñador. Además, a partir de todo el modelo SDES markoviano, mostramos cómo realizar el análisis del modelo a través del enfoque analítico, así como a través de la simulación por ordenador de Monte Carlo. Como aplicación, presentamos un ejemplo numérico de cálculo de la tasa de abandono para una red de servicio con tiempo de servicio general empleando modelos analíticos y de simulación por ordenador.
We are interested in a scalable, flexible, and modular methodology, for modeling and performance analysis of stochastic discrete-event systems (SDES). In this sense, we propose a modular approach for timing non-markovian SDES expressed as a parallel composition of modules that interacts with each other through events. We show how general distribution for event lifetimes can be implemented systematically by coupling timing modules to the system model. As a result, this coupling mechanism preserves modularity, leading to a compact markovian model expressed in terms of flexible modules. Therefore the methodology allows us to write the whole SDES model as a composition of the system model and the timing one, giving flexibility and scalability in modeling design, as we can modify the modules individually according to the designer's interests. In addition, from the whole markovian SDES model, we show how to perform the model analysis through the analytic approach, as well as through Monte Carlo computer simulation. As an application, we present a numerical example of computing the abandonment rate for a service network with general service time employing both analytical and computer-simulation models.
نحن مهتمون بمنهجية قابلة للتطوير ومرنة ومعيارية، لنمذجة وتحليل أداء أنظمة الأحداث المنفصلة العشوائية (SDES). وبهذا المعنى، نقترح نهجًا معياريًا لتوقيت SDES غير الماركوفي معبرًا عنه كتركيبة موازية للوحدات التي تتفاعل مع بعضها البعض من خلال الأحداث. نوضح كيف يمكن تنفيذ التوزيع العام لعمر الحدث بشكل منهجي من خلال إقران وحدات التوقيت بنموذج النظام. ونتيجة لذلك، تحافظ آلية الاقتران هذه على النمطية، مما يؤدي إلى نموذج ماركوفي مدمج يتم التعبير عنه من حيث الوحدات المرنة. لذلك تسمح لنا المنهجية بكتابة نموذج SDES بالكامل كتكوين لنموذج النظام ونموذج التوقيت، مما يمنح المرونة وقابلية التوسع في تصميم النمذجة، حيث يمكننا تعديل الوحدات بشكل فردي وفقًا لاهتمامات المصمم. بالإضافة إلى ذلك، من نموذج Markovian SDES بأكمله، نوضح كيفية إجراء تحليل النموذج من خلال النهج التحليلي، وكذلك من خلال محاكاة الكمبيوتر في مونت كارلو. كتطبيق، نقدم مثالًا رقميًا لحساب معدل التخلي لشبكة الخدمة مع وقت الخدمة العامة باستخدام كل من النماذج التحليلية والمحاكاة الحاسوبية.
Optimization Techniques in Simulation Modeling, Modeling and Control of Petri Nets in Systems, Flexibility (engineering), Social Sciences, Markovianization techniques, Business, Management and Accounting, Discrete event simulation, Management Science and Operations Research, Quantum mechanics, Management Information Systems, Decision Sciences, Database, Theoretical computer science, Monte Carlo computer simulation, FOS: Mathematics, Genetics, Markov process, Stochastic discrete-event systems, Event (particle physics), Biology, Modular design, Discrete-Event Simulation, Operations Management in Call Centers, Physics, Statistics, Scalability, Discrete-Event Systems, Computer science, Distributed computing, Stochastic process, TK1-9971, Programming language, Computational Theory and Mathematics, modular models, FOS: Biological sciences, Computer Science, Physical Sciences, Dynamic Scheduling, Electrical engineering. Electronics. Nuclear engineering, analytic models, Modularity (biology), Simulation, Mathematics
Optimization Techniques in Simulation Modeling, Modeling and Control of Petri Nets in Systems, Flexibility (engineering), Social Sciences, Markovianization techniques, Business, Management and Accounting, Discrete event simulation, Management Science and Operations Research, Quantum mechanics, Management Information Systems, Decision Sciences, Database, Theoretical computer science, Monte Carlo computer simulation, FOS: Mathematics, Genetics, Markov process, Stochastic discrete-event systems, Event (particle physics), Biology, Modular design, Discrete-Event Simulation, Operations Management in Call Centers, Physics, Statistics, Scalability, Discrete-Event Systems, Computer science, Distributed computing, Stochastic process, TK1-9971, Programming language, Computational Theory and Mathematics, modular models, FOS: Biological sciences, Computer Science, Physical Sciences, Dynamic Scheduling, Electrical engineering. Electronics. Nuclear engineering, analytic models, Modularity (biology), Simulation, Mathematics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
