
We propose a parallel portfolio of metaheuristic algorithms that adopts a market trading-based time allocation mechanism. This mechanism dynamically allocates the total available execution time of the portfolio by favoring better-performing algorithms. The proposed approach is assessed on a significant Operations Research problem, namely the single-item lot sizing problem with returns and remanufacturing. Experimental evidence suggests that our approach is highly competitive with standard metaheuristics and specialized state-of-the-art algorithms.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 7 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
