
handle: 10630/20349
The acquisition of 3D MRIs is adversely affected by many degrading factors including low spatial resolution and noise. Image enhancement techniques are commonplace, but there are few proposals that address the increase of the spatial resolution and noise removal at the same time. An algorithm to address this vital need is proposed in this presented work. The proposal tiles the 3D image space into parallelepipeds, so that a median filter is applied in each parallelepiped. The results obtained from several such tilings are then combined by a subsequent median computation. The convergence properties of the proposed method are formally proved. Experimental results with both synthetic and real images demonstrate our approach outperforms its competitors for images with high noise levels. Moreover, it is demonstrated that our algorithm does not generate any hallucinations.
Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech.
Image denoising, Median filter, Single image super-resolution, Sistemas de imágenes tridimensionales, 004, 3D magnetic resonance imaging
Image denoising, Median filter, Single image super-resolution, Sistemas de imágenes tridimensionales, 004, 3D magnetic resonance imaging
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
