Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1007/978-3-...
Part of book or chapter of book . 2015 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Alya Red CCM: HPC-Based Cardiac Computational Modelling

Authors: M. Vázquez; R. Arís; J. Aguado-Sierra; G. Houzeaux; A. Santiago; M. López; P. Córdoba; +2 Authors

Alya Red CCM: HPC-Based Cardiac Computational Modelling

Abstract

This paper describes Alya Red CCM, a cardiac computational modelling tool for supercomputers. It is based on Alya, a parallel simulation code for multiphysics and multiscale problems, which can deal with all the complexity of biological systems simulations. The final goal is to simulate the pumping action of the heart: the model includes the electrical propagation, the mechanical contraction and relaxation and the blood flow in the heart cavities and main vessels. All sub-problems are treated as fully transient and solved in a staggered fashion. Electrophysiology and mechanical deformation are solved on the same mesh, with no interpolation. Fluid flow is simulated on a moving mesh using an Arbitrary Lagrangian-Eulerian (ALE) strategy, being the mesh deformation computed through an anisotropic Laplacian equation. The parallel strategy is based on an automatic mesh partition using Metis and MPI tasks. When required and in order to take profit of multicore clusters, an additional OpenMP parallelization layer is added. The paper describes the tool and its different parts. Alya’s flexibility allows to easily program a large variety of physiological models for each of the sub-problems, including the mutual coupling. This flexibility, added to the parallel efficiency to solve multiphysics problems in complex geometries render Alya Red CCM a well suited tool for cardiac biomedical research at either industrial or academic environments.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Top 10%
Average
Average
Related to Research communities
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!