Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Oxford University Re...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Israel Journal of Mathematics
Article . 2003 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2003
Data sources: zbMATH Open
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Entire functions having a concordant value sequence

Authors: Pila, J;

Entire functions having a concordant value sequence

Abstract

Zur Formulierung der Hauptresultate wird folgende Definition benötigt. Sei \(R\) ein kommutativer Ring mit Eins, \(Y\subset R\) und \(k\in{\mathbb{N}} := \{0,1,\ldots\}\). Eine Abbildung \(f: Y\to R\) heißt konkordant von der Ordnung \(k\) auf \(Y\) in \(R\), wenn es zu jedem \(\kappa\in\{0,\ldots,k\}\) und jeder Wahl \((y_0,\ldots,y_\kappa)\in Y^{\kappa+1}\) ein \(P\in R[t]\) gibt mit \(P(y_i)=f(y_i)\) für \(i=0,\ldots,\kappa\). Ist \(f\) konkordant von jeder Ordnung \(k\in{\mathbb{N}}\) auf \(Y\) in \(R\), so heißt \(f\) superkonkordant auf \(Y\) in \(R\). Mit \(X_a :=\{1,a,a^2,\ldots\}\), wobei \(a\in{\mathbb Z}, | a| \geq 2\) fixiert ist, gilt nun Satz 1: Sei \(k\in{\mathbb N}\). Dann gibt es eine ganze transzendente Funktion \(f\), konkordant von der Ordnung \(k\) auf \(X_a\) in \({\mathbb Z}\), für die \[ \limsup(\log| f| _r)/(\log r)^2 = 1/(4(1-\alpha_k)\log| a| )\tag \(*\) \] mit \(\alpha_k := 3\pi^{-2}\sum_{\kappa=1}^k\, \kappa^{-2}\) gilt. Ist andererseits \(f\) ganz, konkordant von der Ordnung \(k\) auf \(X_a\) in \({\mathbb Z}\) und gilt \((\ast)\) mit \(<\) statt =, so ist \(f\) ein Polynom. Hier und im Weiteren ist \(| f| _r := \max_{| z| =r}| f(z)| \) gesetzt. Für \(k=0\) ist dies eine schwache Version eines Resultats von \textit{A.O. Gel'fond} [Mat. Sb. 40, 42--47 (1933; Zbl 0007.12102)] und der Fall \(k=1\) hängt eng mit einem Ergebnis von \textit{J.-P.-Bézivin} [Ann. Fac. Sci. Toulouse, VI. Sér., Math. 3, 313--334 (1994; Zbl 0829.11038)] zusammen. \textit{G. Pólya's} [Rend. Circ. Mat. Palermo 40, 1--16 (1915; JFM 45.0655.02)] klassischer Satz über \(2^z\) ist im Fall \(k=0\) ein präziserer Vorläufer des folgenden Satzes 2: Sei \(k\in{\mathbb N}\) und \(f\) eine ganze Funktion, konkordant von der Ordnung \(k\) auf \({\mathbb N}\) in \({\mathbb Z}\), die \(\limsup(\log| f| _r)/r < \log(1+\exp(\sum^k_{\kappa=1}\, 1/\kappa))\) genügt. Dann existiert ein \(P\in{\mathbb Z}[t]\) mit \(f(n) = P(n)\) für alle \(n\in{\mathbb N}\). Der Fall \(k=1\) von Satz 2 ist Konsequenz eines Resultats von \textit{A. Perelli} und \textit{U. Zannier} [Boll. Unione Mat. Ital., V.Ser., 18 305--307 (1981; Zbl 0462.30018)]. Über Superkonkordanz beweist Verf. zwei Ergebnisse. Satz 3: Die ganze Funktion \(f\) sei superkonkordant auf \({\mathbb N}\) in \({\mathbb Z}\) und genüge \(\limsup| f| _r/\Gamma(r) < 1\), \(\Gamma\) die Eulersche Gammafunktion. Dann gibt es ein \(P\in{\mathbb Z}[t]\) mit \(f(n)=P(n)\) für alle \(n\in{\mathbb N}\). Satz 4: Die ganze Funktion \(f\) sei superkonkordant auf \(X_a\) (wie oben) in \({\mathbb Z}\) und genüge \(\limsup(\log| f| _r)/(\log r)^2 < 1/\log| a| \). Dann existiert ein \(P\in{\mathbb Z}[t]\) mit \(f(a^n) = P(a^n)\) für alle \(n\in{\mathbb N}\). Zu den Beweisen sagt Verf. an zwei Stellen ``The method of proof of the above results follows the same basic line of [Pólya, loc. cit.] and much of the subsequent work''.

Related Organizations
Keywords

Diophantine approximation, transcendental number theory, Entire and meromorphic functions of one complex variable, and related topics, 510, 004

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Top 10%
Average
Green
Related to Research communities