
pmid: 26737890
More than thirty percent of persons over 65 years fall at least once a year and are often not able to get up again. The lack of timely aid after such a fall incident can lead to severe complications. This timely aid can however be assured by a camera-based fall detection system triggering an alarm when a fall occurs. Most algorithms described in literature use the biggest object detected using background subtraction to extract the fall features. In this paper we compare the performance of our state-of-the-art fall detection algorithm when using only background subtraction, when using a particle filter to track the person and a hybrid method in which the particle filter is only used to enhance the background subtraction and not for the feature extraction. We tested this using our simulation data set containing reenactments of real-life falls. This comparison shows that this hybrid method significantly increases the sensitivity and robustness of the fall detection algorithm resulting in a sensitivity of 76.1% and a PPV of 41.2%.
Technology, Science & Technology, PSI_4040, Engineering, Electrical & Electronic, PSI_VISICS, Engineering, STADIUS-15-228, Assisted Living, Photography, Fall Detection, Humans, Accidental Falls, Engineering, Biomedical, Algorithms, Filtration, Aged
Technology, Science & Technology, PSI_4040, Engineering, Electrical & Electronic, PSI_VISICS, Engineering, STADIUS-15-228, Assisted Living, Photography, Fall Detection, Humans, Accidental Falls, Engineering, Biomedical, Algorithms, Filtration, Aged
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 16 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
