Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Die Bodenkultur Jour...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Die Bodenkultur Journal of Land Management Food and Environment
Article . 2023 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Adapting to climate variability for rice cultivation paddies in the lowland coastal regions of Kien Giang Province, Vietnam

Authors: Phung Thai D.; Dang Truong A.;

Adapting to climate variability for rice cultivation paddies in the lowland coastal regions of Kien Giang Province, Vietnam

Abstract

Summary Globally, coastal cultivation regions (CCRs) are facing irrigation water shortages due to the impacts of climate change (ICV). CCRs have repeatedly suffered from saline irrigation water, increases in temperature, and reduced rainfall, resulting in irrigation water shortages. The aim of this study was, therefore, to evaluate the impacts of weather variables on the rice water requirement (RWR) in CCRs in Kien Giang Province. The response of rice grain yield to weather variables was estimated by simulating the AquaCrop model under different crop cultivation schedules (CCSs). These schedules involved advancing or delaying the sowing date by 30 days compared to the current common sowing date (baseline) for winter-spring (WS) and summer-fall (SF) vegetation seasons. The AquaCrop model demonstrated accurate simulation capabilities, as indicated by the high correlation values of statistical error indexes during the validation and calibration procedures. The findings revealed that rice grain yields would enhance up to 7.8% and 5.6% compared to the baseline when CCSs involve sowing 20 days earlier for WS vegetation season and are advanced by 20 days for SF vegetation season. Overall, modifying CCSs for coastal rice paddies in the study area, while considering weather variables, would have a positive contribution by mitigating the adverse effects of ICV.

Keywords

reisfelder an der küste, reis, grain yield, rice, klimawandel, Environmental sciences, climate change, fao-modell, fao model, getreideertrag, GE1-350, coastal rice paddies

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Published in a Diamond OA journal