
doi: 10.1137/120876605
Spectral divide and conquer algorithms solve the eigenvalue problem for all the eigenvalues and eigenvectors by recursively computing an invariant subspace for a subset of the spectrum and using it to decouple the problem into two smaller subproblems. A number of such algorithms have been developed over the last 40 years, often motivated by parallel computing and, most recently, with the aim of achieving minimal communication costs. However, none of the existing algorithms has been proved to be backward stable, and they all have a significantly higher arithmetic cost than the standard algorithms currently used. We present new spectral divide and conquer algorithms for the symmetric eigenvalue problem and the singular value decomposition that are backward stable, achieve lower bounds on communication costs recently derived by Ballard, Demmel, Holtz, and Schwartz, and have operation counts within a small constant factor of those for the standard algorithms. The new algorithms are built on the polar decomposition and exploit the recently developed QR-based dynamically weighted Halley algorithm of Nakatsukasa, Bai, and Gygi, which computes the polar decomposition using a cubically convergent iteration based on the building blocks of QR factorization and matrix multiplication. The algorithms have great potential for efficient, numerically stable computations in situations where the cost of communication dominates the cost of arithmetic. © 2013 Society for Industrial and Applied Mathematics.
Subspace iteration, Dynamically weighted Halley iteration, Backward error analysis, Numerical stability, QR factorization, Singular value decomposition, Spectral divide and conquer, SVD, Symmetric eigenvalue problem, Polar decomposition
Subspace iteration, Dynamically weighted Halley iteration, Backward error analysis, Numerical stability, QR factorization, Singular value decomposition, Spectral divide and conquer, SVD, Symmetric eigenvalue problem, Polar decomposition
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 63 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
