Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ SIAM Journal on Scie...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
SIAM Journal on Scientific Computing
Article . 2013 . Peer-reviewed
Data sources: Crossref
DBLP
Article
Data sources: DBLP
versions View all 8 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Stable and Efficient Spectral Divide and Conquer Algorithms for the Symmetric Eigenvalue Decomposition and the SVD

Authors: Yuji Nakatsukasa; Nicholas J. Higham;

Stable and Efficient Spectral Divide and Conquer Algorithms for the Symmetric Eigenvalue Decomposition and the SVD

Abstract

Spectral divide and conquer algorithms solve the eigenvalue problem for all the eigenvalues and eigenvectors by recursively computing an invariant subspace for a subset of the spectrum and using it to decouple the problem into two smaller subproblems. A number of such algorithms have been developed over the last 40 years, often motivated by parallel computing and, most recently, with the aim of achieving minimal communication costs. However, none of the existing algorithms has been proved to be backward stable, and they all have a significantly higher arithmetic cost than the standard algorithms currently used. We present new spectral divide and conquer algorithms for the symmetric eigenvalue problem and the singular value decomposition that are backward stable, achieve lower bounds on communication costs recently derived by Ballard, Demmel, Holtz, and Schwartz, and have operation counts within a small constant factor of those for the standard algorithms. The new algorithms are built on the polar decomposition and exploit the recently developed QR-based dynamically weighted Halley algorithm of Nakatsukasa, Bai, and Gygi, which computes the polar decomposition using a cubically convergent iteration based on the building blocks of QR factorization and matrix multiplication. The algorithms have great potential for efficient, numerically stable computations in situations where the cost of communication dominates the cost of arithmetic. © 2013 Society for Industrial and Applied Mathematics.

Country
United Kingdom
Related Organizations
Keywords

Subspace iteration, Dynamically weighted Halley iteration, Backward error analysis, Numerical stability, QR factorization, Singular value decomposition, Spectral divide and conquer, SVD, Symmetric eigenvalue problem, Polar decomposition

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    63
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
63
Top 10%
Top 10%
Top 10%
bronze