
arXiv: 2206.06213
Interpretable regression models are important for many application domains, as they allow experts to understand relations between variables from sparse data. Symbolic regression addresses this issue by searching the space of all possible free form equations that can be constructed from elementary algebraic functions. While explicit mathematical functions can be rediscovered this way, the determination of unknown numerical constants during search has been an often neglected issue. We propose a new multi-objective memetic algorithm that exploits a differentiable Cartesian Genetic Programming encoding to learn constants during evolutionary loops. We show that this approach is competitive or outperforms machine learned black box regression models or hand-engineered fits for two applications from space: the Mars express thermal power estimation and the determination of the age of stars by gyrochronology.
FOS: Computer and information sciences, Artificial Intelligence (cs.AI), Computer Science - Artificial Intelligence
FOS: Computer and information sciences, Artificial Intelligence (cs.AI), Computer Science - Artificial Intelligence
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
