Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Electrical Engineeri...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Electrical Engineering
Article . 2023 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Data-driven-based fuzzy control system design for a hybrid electric vehicle

Authors: Ahmet Beşkardeş; Yakup Hameş;

Data-driven-based fuzzy control system design for a hybrid electric vehicle

Abstract

A well-designed energy management system plays a crucial role in increasing fuel efficiency and reducing polluting emissions in dual-power hybrid electric vehicles (HEVs), which are an intermediate stage in the transition from combustion engine vehicles to fully electric vehicles. Despite many studies to optimize energy management, innovative ideas are needed to ensure the most appropriate energy use according to changing road, vehicle, and driver types. For this purpose, we developed a data-driven method to construct a stochastic energy management system, considering realistic uncertainties. We have demonstrated that an HEV can be used more efficiently with an appropriate energy management strategy depending on the road type and driving style. We collected and analyzed 38 thousand km of real driving data with nine different drivers. We transformed these data into meaningful information with a comprehensive data processing methodology and then classified driving styles according to these data using data mining methods. The classification algorithm we designed predicted driving style for three different roads with an average success rate of 95%. We achieved better fuel and emission values with a fuzzy logic-based energy management system that we designed according to the driving style determined by our classification algorithm. The fuzzy controller we developed achieved fuel improvements of up to 7% on the motorway, 9% on the urban road, and 16% on the residential district, based on real driving data results. Although there is a trade-off between fuel and pollutant emissions, our proposed system has also produced significant improvements in harmful emissions. Our results can be used as an inspiration and guide in the studies of improving fuel and emissions in HEVs.

Related Organizations
Keywords

Logic, Fuzzy logic controllers, Strategy, Battery, Fuzzy control, Classification algorithm, Data driven, Highway administration, Information management, Real drivings, Fuel efficiency, Data mining, Plug-in Hybrid Vehicles, Driving styles, Energy Conservation, Control systems, Hybrid electric vehicles, Fuzzy logic controller, Stochastic systems, Temperature control, Controllers, Economic and social effects, Electrical Engineering, Electronics & Computer Science - Power Systems & Electric Vehicles - Electric Vehicles, Energy management, Roads and streets, Computer circuits, Data handling, Polluting emission, Fuzzy logic, Recognition, Data-driven approach, Bayesian network, Energy efficiency, Fuzzy control system designs, Energy management systems, Energy Management, Cell, Hybrid vehicles, Dual power

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Top 10%
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!