
Convolutional neural networks for detection geo-objects on the satellite images from DSTL, Landsat -8 and PlanetScope databases were analyzed. Three modification of convolutional neural network architecture for implementing the recognition algorithm was used. Images obtained from the Landsat -8 and PlanetScope satellites are used for estimation of automatic object detection quality. To analyze the accuracy of the object detection algorithm, the selected regions were compared with the areas by previously marked by experts. An important result of the study was the improvement of the detector for the class “Forest”. Segmentation of satellite images has found application at urban planning, forest management, climate modelling, etc.
Image segmentation, Object detection algorithms, Object detection, Satellites, Network architecture, Forestry, Convolutional neural network, Object recognition, Convolution, 004, LANDSAT, Recognition algorithm, GEO objects, Satellite images, Neural networks
Image segmentation, Object detection algorithms, Object detection, Satellites, Network architecture, Forestry, Convolutional neural network, Object recognition, Convolution, 004, LANDSAT, Recognition algorithm, GEO objects, Satellite images, Neural networks
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 22 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
