Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Plant Breeding and S...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Plant Breeding and Seed Production
Article . 2021 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Plant Breeding and Seed Production
Article
License: CC BY
Data sources: UnpayWall
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Environmental trial of pea breeding acessions

Authors: Shevchenko, L. M.; Vasylenko, A. O.; Sichkar, V. I.; Vus, N. A.; Bezuglyi, I. M.; Solomonov, R. V.; Shtelma, A. M.; +1 Authors

Environmental trial of pea breeding acessions

Abstract

The aim of the study was to determine the information content and adequacy of the ecological testing points of the pea breeding material and to identify the "ideal" genotype. Materials and methods. The breeding material in the experiments was represented by cultivars bred at the PPI nd.a. V.Ya. Yuriev (Tsarevych, Oplot, Otaman, Metsenat, Korvet, Haiduk, and Malakhit) and ten breeding lines (SL 11-129, SL 11-213, SL 11-55, SL 11-58, SL 10-37, SL 11-32, SL 10-132, SL 09-118, SL 11-166, and SL 11-176). In addition there was one cultivar (Svit) bred at the Plant Breeding and Genetics Institute. All the cultivars are leafless, semi-dwarf, mid-ripening, except for Tsarevych (mid-early). The field experiments were carried out in accordance with the methods of field experimentation, using the conventional pea growing technology. The seeding rate was 1.2 million germinable seeds/ha; the plot area was 10 m2. To evaluate the accessions for the variability in different environments, we used a regression model developed by S.A. Eberhart and W.A. Russel, where the regression coefficient is an indicator of the genotype-environment interaction. This model is included in "Guidelines for Environmental Trials of Corn". Results and discussion. Thus, comparing the regression coefficient in pea cultivars Oplot, Tsarevych, Haiduk, Korvet, and Metsenat, we could conclude that these accessions were highly intensive in the OSES conditions and extensive in the PPI NAAS conditions (except for Metsenat). Regarding the regression coefficient in the breeding lines, none of them had a regression coefficient of 1.0. Over the study period, the regression coefficient was 1.4 only in line SL 11-58 (PPI NAAS) and 1.2 (OSES), characterizing this line as intensive regardless of the place of cultivation. Taking into account that the regression coefficient values of <1 are intrinsic to extensive accessions, lines SL 10-132 (RC = 0.4) and SL 11-176 (RC = 0.8) are preferred. Because these accessions also have a high genotypic effect. In addition, the regression coefficient in breeding line SL 09-118 was 0.9, with a genotypic effect of 0.07. Such combination of the indicators characterizes the line as relatively stable, with sufficient potential performance, and this breeding line will not be demanding to growing conditions similar to the OSES ones. Conclusions. Thus, the evaluation of both cultivars and breeding lines in the environmental trial showed that the pea breeding at the Plant Production Institute named after VYa Yuryev had a significant potential to create cultivars that would be well-adapted to both eastern and southern conditions, and that environmental trials remained an effective tool for assessing breeding material and selecting accessions with the maximum fulfillment of the genetic potential

Related Organizations
Keywords

генотипический эффект, экологическое испытание, pea, екологічне випробування, коефіцієнт регресії, горох, regression coefficient, stability, урожайність, yield, сорти, генотиповий ефект, variety, коэффициент регрессии, стабильность, genotypic effect, урожайность, сорт, стабільність, environmental testing

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold
Related to Research communities