Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PubMed Centralarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2022
Data sources: PubMed Central
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Analog Integrated Circuits and Signal Processing
Article . 2022 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Fuzzy-ChOA: an improved chimp optimization algorithm for marine mammal classification using artificial neural network

Authors: Abbas Saffari; Mohammad Khishe; Seyed-Hamid Zahiri;

Fuzzy-ChOA: an improved chimp optimization algorithm for marine mammal classification using artificial neural network

Abstract

Chimp optimization algorithm (ChOA) is a robust nature-inspired technique, which was recently proposed for addressing real-world challenging engineering problems. Due to the novelty of the ChOA, there is room for its improvement. Recognition and classification of marine mammals using artificial neural networks (ANNs) are high-dimensional challenging problems. In order to address this problem, this paper proposed the using of ChOA as ANN's trainer. However, evolving ANNs using metaheuristic algorithms suffers from high complexity and processing time. In order to address this shortcoming, this paper proposes the fuzzy logic to adjust the ChOA's control parameters (Fuzzy-ChOA) for tuning the relationship between exploration and exploitation phases. In this regard, we collect underwater marine mammals sounds and then produce an experimental dataset. After pre-processing and feature extraction, the ANN is used as a classifier. Besides, for having a fair comparison, we used a benchmark audio database of marine mammals. The comparison algorithms include ChOA, coronavirus optimization algorithm, harris hawks optimization, black widow optimization algorithm, Kalman filter benchmark algorithms, and also comparative benchmarks include convergence speed, local optimal avoidance ability, classification rate, and receiver operating characteristics (ROC). The simulation results show that the proposed fuzzy model can tune the boundary between the exploration and extraction phases. The convergence curve and ROC confirm that the convergence rate and performance of the designed recognizer are better than benchmark algorithms.

Related Organizations
Keywords

Article

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    53
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
53
Top 1%
Top 10%
Top 1%
Green