
Proton Exchange Membrane (PEM) fuel cell is one of the most popular fuel cells because of its higher efficiency among the other fuel cells. Because of the expensive materials in designing of this type of fuel cell, it should be first design and simulated in the best and optimum way to reduce the construction costs as much as possible. In the present study, a new model identification is proposed for optimal parameters identification of the PEM fuel cells. The major idea in this study is to provide a new optimal methodology to parameters estimation of the unknown variables in the PEM fuel cell model so that the absolute error (IAE) between the estimated data based on the proposed model and the real data has been minimized. The proposed method uses a new improved design of Archimedes Optimization Algorithm (IAOA) to this purpose. The designed model is then implemented on two practical case studies and the results are compared with some well-known methods. Final results shows that the proposed method with 0.10 and 0.14 error values for Nexa and NedStack PS6 models, respectively, provides the best solution among the other comparative methods.
Proton-exchange membrane fuel cells, Integral of the absolute Error, Parameter estimation, Electrical engineering. Electronics. Nuclear engineering, Modified Archimedes optimization algorithm, Nexa PEMFC stack, NedSstack PS6 PEMFC stack, TK1-9971
Proton-exchange membrane fuel cells, Integral of the absolute Error, Parameter estimation, Electrical engineering. Electronics. Nuclear engineering, Modified Archimedes optimization algorithm, Nexa PEMFC stack, NedSstack PS6 PEMFC stack, TK1-9971
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 20 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
