Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Power Systems
Article . 2018 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
https://doi.org/10.1109/pesgm....
Article . 2018 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Optimal Location Planning of Renewable Distributed Generation Units in Distribution Networks: An Analytical Approach

Authors: Chaorui Zhang; Jiayong Li; Ying Jun Zhang; Zhao Xu;

Optimal Location Planning of Renewable Distributed Generation Units in Distribution Networks: An Analytical Approach

Abstract

In this paper, we study the optimal location planning of renewable distributed generation (RDG) units by taking into account the random uncertainties of renewable generation and load demand. In presence of the random uncertainties, location planning problem is naturally a two-stage stochastic mixed integer nonlinear programming problem, which is hard to solve efficiently. Instead of using traditional sampling methods or robust optimization methods, we propose a novel analytical approach in this paper to solve the problem efficiently and optimally. In particular, analytical expressions are derived for efficiently evaluating the performance of a candidate RDG placement decision. In this way, the stochastic mixed integer nonlinear programming problem is equivalently transformed into a deterministic integer problem, which can be solved efficiently using off-the-shelf tools. Numerical results show that the optimal RDG placement can save up to $4.2\%$ of the long-term average cost and $80.59\%$ of the line losses on the IEEE 13-bus test feeder. In addition, our proposed approach effectively reduces the computational time by $99.51\%$ on the IEEE 123 node test feeder compared with other traditional sampling-based metaheuristic approaches.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    56
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
56
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!