Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Wireless Communications
Article . 2024 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2023
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
DBLP
Article
Data sources: DBLP
DBLP
Article
Data sources: DBLP
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Message Passing Meets Graph Neural Networks: A New Paradigm for Massive MIMO Systems

Authors: Hengtao He; Xianghao Yu; Jun Zhang 0004; Shenghui Song 0001; Khaled B. Letaief;

Message Passing Meets Graph Neural Networks: A New Paradigm for Massive MIMO Systems

Abstract

As one of the core technologies for 5G systems, massive multiple-input multiple-output (MIMO) introduces dramatic capacity improvements along with very high beamforming and spatial multiplexing gains. When developing efficient physical layer algorithms for massive MIMO systems, message passing is one promising candidate owing to the superior performance. However, as their computational complexity increases dramatically with the problem size, the state-of-the-art message passing algorithms cannot be directly applied to future 6G systems, where an exceedingly large number of antennas are expected to be deployed. To address this issue, we propose a model-driven deep learning (DL) framework, namely the AMP-GNN for massive MIMO transceiver design, by considering the low complexity of the AMP algorithm and adaptability of GNNs. Specifically, the structure of the AMP-GNN network is customized by unfolding the approximate message passing (AMP) algorithm and introducing a graph neural network (GNN) module into it. The permutation equivariance property of AMP-GNN is proved, which enables the AMP-GNN to learn more efficiently and to adapt to different numbers of users. We also reveal the underlying reason why GNNs improve the AMP algorithm from the perspective of expectation propagation, which motivates us to amalgamate various GNNs with different message passing algorithms. In the simulation, we take the massive MIMO detection to exemplify that the proposed AMP-GNN significantly improves the performance of the AMP detector, achieves comparable performance as the state-of-the-art DL-based MIMO detectors, and presents strong robustness to various mismatches.

30 Pages, 7 Figures, and 4 Tables. This paper has been accepted by the IEEE Transactions on Wireless Communications. The code is available at: https://github.com/hehengtao/AMP_GNN

Country
China (People's Republic of)
Related Organizations
Keywords

Signal Processing (eess.SP), FOS: Computer and information sciences, Computer Science - Machine Learning, Computer Science - Information Theory, Information Theory (cs.IT), Bayesian inference, Channel estimation, Deep learning, Detectors, Approximation algorithms, Graph neural networks, Machine Learning (cs.LG), Message passing, FOS: Electrical engineering, electronic engineering, information engineering, Inference algorithms, Electrical Engineering and Systems Science - Signal Processing, Massive MIMO, Wireless networks, 6G, Model-driven

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Top 10%
Top 10%
Top 10%
Green