
In machine learning and deep learning, uncertainty quantification helps to accurately assess a model's confidence in its predictions, enabling the rejection of uncertain outcomes in safety-critical applications. However, in scenarios involving AI-assisted decision-making, proposing multiple plausible decisions can be more beneficial than either not making any decisions or risking incorrect ones. Set-valued classification is a relaxation of standard multiclass classification where, in cases of uncertainty, the classifier returns a set of potential labels instead of a single label. Current methods for set-valued classification often suffer from high computational complexity or fail to adequately quantify uncertainty. In this paper, we introduce a novel, computationally efficient approach to set-valued classification leveraging evidential deep learning and subjective logic, explicitly providing a measure of classification uncertainty. Our method employs a dual-head architecture: one head conducts multiclass evidential classification, while the other suggests candidate label sets when uncertainty is high. The proposed approach has linear worstcase computational complexity with respect to the number of classes. Extensive evaluation on several benchmark datasets demonstrates that our method showcases comparable performance to baseline set-valued methods, while being up to 23 times faster at inference on the benchmark datasets.
[INFO.INFO-AI] Computer Science [cs]/Artificial Intelligence [cs.AI], Subjective logic, Set-valued classification, Utility maximization, Uncertainty quantification, Evidential deep learning
[INFO.INFO-AI] Computer Science [cs]/Artificial Intelligence [cs.AI], Subjective logic, Set-valued classification, Utility maximization, Uncertainty quantification, Evidential deep learning
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
