Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://doi.org/10.1...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.1007/978-3-...
Part of book or chapter of book . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Energy-Efficient Straight-Line Driving Torque Vectoring for Electric Vehicles with Disconnect Clutches and Unequal Front/Rear Motors

Authors: Grđan, Ivo; Škugor, Branimir; Deur, Joško;

Energy-Efficient Straight-Line Driving Torque Vectoring for Electric Vehicles with Disconnect Clutches and Unequal Front/Rear Motors

Abstract

AbstractThis paper investigates potential of energy efficiency improvement for electric vehicle (EV) equipped with unequal front/rear-axle e-motors and disconnect clutches under straight-line driving conditions. First, a static optimization of front/rear torque distribution is performed for various driving cycles, which provides insights into energy efficiency gains and optimal powertrain operation including optimal torque switching curve for two- and four-wheel drive modes. Disconnect clutches enable inactive motors to be switched off when operating in the 2WD mode to avoid their drag losses. A dynamic programming (DP)-based optimization of torque vectoring control trajectories is carried out to find the globally optimal energy saving potential. For clutch durability reasons, the number of clutch state changes is minimized along with energy consumption. Finally, a rule-based (RB) control strategy is proposed and verified against the DP Pareto optimal frontier benchmark for different certification driving cycles.

Keywords

Four-wheel Drive, Optimization, Unequal Motors, TEHNIČKE ZNANOSTI. Strojarstvo., Disconnect Clutches, Control, TECHNICAL SCIENCES. Mechanical Engineering., En-ergy Efficiency, Torque Vectoring, Electric Vehicles, Electric Vehicles, Four-wheel Drive, Unequal Motors, Disconnect Clutches, En-ergy Efficiency, Torque Vectoring, Optimization, Control

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green
hybrid
Related to Research communities