
Solving bilevel multi-objective programming problems is one of the hardest tasks facing researchers in the optimization community. Bilevel multi-objective programming problems is an optimization problem consists of two interconnected hierarchical multi-objective programming problems: upper-level problem and lower-level problem. Difficulty in solving bilevel multi-objective programming problems is the need to solve lower-level multi-objective programming problem to know the feasible space of the upper-level problem. The proposed algorithm consists of two nested artificial multi-objective algorithms. One algorithm is for the upper-level problem and the other is for the lower-level problem. Also, the proposed algorithm is enriched with a k-means cluster scheme in two phases. The first phase is before starting two nested algorithms to help the algorithm to start with more appropriates solutions to the bi-level problem. The second phase is within the two nested algorithms to guide the algorithm to the most preferred solutions to the upper-level decision-maker. The performance of the proposed algorithm has been evaluated on different test problems including low dimension and high dimension test problems. The experimental results show that the proposed algorithm is a feasible and efficient method for solving the bilevel multi-objective programming problem.
Genetic algorithm, Bilevel multi-objective programming, K-means clustering, Pareto optimal solution, TA1-2040, Evolutionary algorithms, Engineering (General). Civil engineering (General)
Genetic algorithm, Bilevel multi-objective programming, K-means clustering, Pareto optimal solution, TA1-2040, Evolutionary algorithms, Engineering (General). Civil engineering (General)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 29 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
