
In this work, the computational complexity of a hierarchic optimization problem involving in several players is studied. Each player is assigned with a linear objective function. The set of variables is partitioned such that each subset corresponds to one player as its decision variables. All the players jointly make a decision on the values of these variables such that a set of linear constraints should be satisfied. One special player, called the leader, makes decision on its decision variables before of all the other players. The rest, after learnt of the decision of the leader, make their choices so that their decisions form a Nash Equilibrium for them, breaking tie by maximizing the objective function of player. We show that the exact complexity of the problem is FPNP-complete.
Combinatorial optimization, Complexity and performance of numerical algorithms, Analysis of algorithms and problem complexity, \(n\)-person games, \(n>2\), Abstract computational complexity for mathematical programming problems
Combinatorial optimization, Complexity and performance of numerical algorithms, Analysis of algorithms and problem complexity, \(n\)-person games, \(n>2\), Abstract computational complexity for mathematical programming problems
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
