Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Publications Open Re...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Transactions on Knowledge and Data Engineering
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2024
License: CC BY NC SA
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Unsupervised Concept Drift Detection From Deep Learning Representations in Real-Time

Authors: Salvatore Greco; Bartolomeo Vacchetti; Daniele Apiletti; Tania Cerquitelli;

Unsupervised Concept Drift Detection From Deep Learning Representations in Real-Time

Abstract

Concept drift is the phenomenon in which the underlying data distributions and statistical properties of a target domain change over time, leading to a degradation in model performance. Consequently, production models require continuous drift detection monitoring. Most drift detection methods to date are supervised, relying on ground-truth labels. However, they are inapplicable in many real-world scenarios, as true labels are often unavailable. Although recent efforts have proposed unsupervised drift detectors, many lack the accuracy required for reliable detection or are too computationally intensive for real-time use in high-dimensional, large-scale production environments. Moreover, they often fail to characterize or explain drift effectively. To address these limitations, we propose \textsc{DriftLens}, an unsupervised framework for real-time concept drift detection and characterization. Designed for deep learning classifiers handling unstructured data, \textsc{DriftLens} leverages distribution distances in deep learning representations to enable efficient and accurate detection. Additionally, it characterizes drift by analyzing and explaining its impact on each label. Our evaluation across classifiers and data-types demonstrates that \textsc{DriftLens} (i) outperforms previous methods in detecting drift in 15/17 use cases; (ii) runs at least 5 times faster; (iii) produces drift curves that align closely with actual drift (correlation $\geq\!0.85$); (iv) effectively identifies representative drift samples as explanations.

Accepted at IEEE Transactions on Knowledge and Data Engineering (TKDE)

Related Organizations
Keywords

Concept Drift; Data Drift; Drift Detection; Drift Explanation; Deep Learning; NLP; Computer Vision; Audio, Machine Learning, FOS: Computer and information sciences, Artificial Intelligence (cs.AI), Artificial Intelligence, Machine Learning (cs.LG)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
hybrid
Related to Research communities