
arXiv: 1509.05001
Quantum adiabatic evolution is perceived as useful for binary quadratic programming problems that are a priori unconstrained. For constrained problems, it is a common practice to relax linear equality constraints as penalty terms in the objective function. However, there has not yet been proposed a method for efficiently dealing with inequality constraints using the quantum adiabatic approach. In this paper, we give a method for solving the Lagrangian dual of a binary quadratic programming (BQP) problem in the presence of inequality constraints and employ this procedure within a branch-and-bound framework for constrained BQP (CBQP) problems.
FOS: Computer and information sciences, Quantum Physics, Computer Science - Emerging Technologies, FOS: Physical sciences, Emerging Technologies (cs.ET), Optimization and Control (math.OC), FOS: Mathematics, Quantum Physics (quant-ph), Mathematics - Optimization and Control
FOS: Computer and information sciences, Quantum Physics, Computer Science - Emerging Technologies, FOS: Physical sciences, Emerging Technologies (cs.ET), Optimization and Control (math.OC), FOS: Mathematics, Quantum Physics (quant-ph), Mathematics - Optimization and Control
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
