
This Monte Carlo simulation study investigated the impact of nonnormality on estimating and testing mediated effects with the parallel process latent growth model and 3 popular methods for testing the mediated effect (i.e., Sobel’s test, the asymmetric confidence limits, and the bias-corrected bootstrap). It was found that nonnormality had little effect on the estimates of the mediated effect, standard errors, empirical Type I error, and power rates in most conditions. In terms of empirical Type I error and power rates, the bias-corrected bootstrap performed best. Sobel’s test produced very conservative Type I error rates when the estimated mediated effect and standard error had a relationship, but when the relationship was weak or did not exist, the Type I error was closer to the nominal .05 value.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 14 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
