Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ HAFED POLY Journal o...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
HAFED POLY Journal of Science Management and Technology
Article . 2024 . Peer-reviewed
License: CC BY NC SA
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Device to Device Communication Using Optimized Frequency Spectrum Reuse (OFSR) in Multi-Layered Cellular Network

Authors: Matthew, Ugochukwu.O; Aderinola, Musefiu; Shuaibu, Isiaka; Kazaure, Jazuli S.; Ohabuiro, John; Daniel, Ogobuchi Okey; UNwamouh, Ubochi C.;

Device to Device Communication Using Optimized Frequency Spectrum Reuse (OFSR) in Multi-Layered Cellular Network

Abstract

In a cellular network, Device to Device (D2D) communication faces a number of difficulties, including interference and slow upward and downward linking between device connectivity with base stations. Utilizing optimum frequency spectrum reuse (OFSR), these two issues can be overcome. In order to prevent D2D communication devices on the Evolved Node B (eNB) and cellular user transmitters from interfering with D2D receiver, OFSR is a mechanism where the user reuses the frequency of another cell. The study looks at the problem of spectrum sharing between D2D and cellular communications in a cellular network. Under this network spectrum rationalization, D2D links may access the spectrum that a mobile network operator manages. Each D2D link has the choice of acquiring a sub-band for exclusive usage or gaining access to the sub- bands used by cellular users. Spectrum can also be shared by D2D lines that only use a particular sub-band. One to one hundred (1-100), one to two hundred (1-200), one to three hundred (1-300), and one to four hundred (1-400) users each made up a group (1-400). The system equations were used to represent the network information, such as link gains, noise levels, signal-to-interference- and-noise ratios, and the devices' selected communication mode. Simulations that incorporate D2D communication as an additional communication channel are utilized to demonstrate performance bounds for the cellular system based on the derived equations. When compared to resource allocation technique, the simulation result demonstrates that OFSR has less interference. As can be observed from the simulation results, the throughput in the down link is higher than the throughput in the uplink. 

Keywords

Mobile Cellular Network, D2D Communication, Wireless frequency Reuse, Data Transmission Protocol, Spectrum Efficiency

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
hybrid