
doi: 10.1155/2020/3054764
This paper develops two novel and fast Riemannian second-order approaches for solving a class of matrix trace minimization problems with orthogonality constraints, which is widely applied in multivariate statistical analysis. The existing majorization method is guaranteed to converge but its convergence rate is at best linear. A hybrid Riemannian Newton-type algorithm with both global and quadratic convergence is proposed firstly. A Riemannian trust-region method based on the proposed Newton method is further provided. Some numerical tests and application to the least squares fitting of the DEDICOM model and the orthonormal INDSCAL model are given to demonstrate the efficiency of the proposed methods. Comparisons with some latest Riemannian gradient-type methods and some existing Riemannian second-order algorithms in the MATLAB toolbox Manopt are also presented.
Numerical mathematical programming methods, Estimation in multivariate analysis, Computational methods for problems pertaining to statistics, Information geometry (statistical aspects)
Numerical mathematical programming methods, Estimation in multivariate analysis, Computational methods for problems pertaining to statistics, Information geometry (statistical aspects)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
