Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1109/tnse.2...
Article . 2020 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
DBLP
Article
Data sources: DBLP
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

PassengerFlows: A Correlation-Based Passenger Estimator in Automated Public Transport

Authors: Fang-Jing Wu; Yunfeng Huang; Lucas Döring; Stephanie Althoff; Kai Bitterschulte; Keng Yip Chai; Lidong Mao; +2 Authors

PassengerFlows: A Correlation-Based Passenger Estimator in Automated Public Transport

Abstract

Human mobility information is widely needed by many sectors in smart cities, especially for public transport. This work designs lightweight algorithms to perform stop detection , passenger flow tracking , and passenger estimation in an automated train. The on-board learning and detection algorithms are running on an edge node that is integrated with Wi-Fi sniffing technology, a GPS sensor, and an inertial measurement unit (IMU) sensor. The stop detection algorithm determines if the automated train is static at which train station based on GPS and IMU data. When the train is moving, the correlations between statistical properties extracted from Wi-Fi probes and the actual number of passengers change. Therefore, two algorithms, passenger flow tracking and passenger estimation, are designed to analyze passenger mobility. The passenger flow tracking algorithm analyzes the number of incoming and outgoing passengers in the train. The passenger estimation algorithm approximates the number of passengers inside the train based on a multi-dimensional regression model created by statistical properties extracted from different device brands. The designed prototype is deployed in an automated hanging train to conduct real-world experiments. The experimental results indicate that the proposed passenger flow tracking algorithm reduces the average errors of $62.5\%$ and $70\%$ compared against two existing clustering algorithms respectively. When the devices’ brands are split for creating a regression model, compared with two counting-based approaches, the proposed passenger estimation algorithm results in lower errors with a mean of 3.15 and a variance of 9.29.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Top 10%
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!