
Human mobility information is widely needed by many sectors in smart cities, especially for public transport. This work designs lightweight algorithms to perform stop detection , passenger flow tracking , and passenger estimation in an automated train. The on-board learning and detection algorithms are running on an edge node that is integrated with Wi-Fi sniffing technology, a GPS sensor, and an inertial measurement unit (IMU) sensor. The stop detection algorithm determines if the automated train is static at which train station based on GPS and IMU data. When the train is moving, the correlations between statistical properties extracted from Wi-Fi probes and the actual number of passengers change. Therefore, two algorithms, passenger flow tracking and passenger estimation, are designed to analyze passenger mobility. The passenger flow tracking algorithm analyzes the number of incoming and outgoing passengers in the train. The passenger estimation algorithm approximates the number of passengers inside the train based on a multi-dimensional regression model created by statistical properties extracted from different device brands. The designed prototype is deployed in an automated hanging train to conduct real-world experiments. The experimental results indicate that the proposed passenger flow tracking algorithm reduces the average errors of $62.5\%$ and $70\%$ compared against two existing clustering algorithms respectively. When the devices’ brands are split for creating a regression model, compared with two counting-based approaches, the proposed passenger estimation algorithm results in lower errors with a mean of 3.15 and a variance of 9.29.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 6 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
