
AbstractThe distribution function of the minimum distance (the minimum weight of nonzero codewords) of a random linear code over a finite field is studied. Expicit bounds in the form of inequalities and asymptotic estimates for this distribution function are obtained.
explicit estimates of distribution functions, asymptotic estimates of distribution functions, minimum distance of a linear code, Linear codes (general theory)
explicit estimates of distribution functions, asymptotic estimates of distribution functions, minimum distance of a linear code, Linear codes (general theory)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
