Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Antimicrobial Resist...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Antimicrobial Resistance and Infection Control
Article . 2018 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2018
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The infection risk scan (IRIS): standardization and transparency in infection control and antimicrobial use

Authors: Ina Willemsen; Jan Kluytmans;

The infection risk scan (IRIS): standardization and transparency in infection control and antimicrobial use

Abstract

Abstract Background Infection control needs user-friendly standardized instruments to measure the compliance to guidelines and to implement targeted improvement actions. This abstract describes a tool to measure the quality of infection control and antimicrobial use, the Infection Risk Scan (IRIS). It has been applied in a hospital, several nursing homes and a rehabilitation clinic in the Netherlands. Method The IRIS consists of a set of objective reproducible measurements, combining patient- and healthcare related variables, such as: hand hygiene compliance, environmental contamination using ATP measurements, prevalence of resistant microorganisms by active screening, availability of infection control preconditions, personal hygiene of healthcare workers, appropriate use of indwelling medical devices and appropriate use of antimicrobials. Results are visualized in a spider plot using traffic light colors to facilitate the interpretation. Results The IRIS provided ward specific results within the hospital that were the basis for targeted improvement programs resulting in measurable improvements. Hand hygiene compliance increased from 43% to 66% (more than 1000 observations per IRIS, p < 0.000) and ATP levels were significantly reduced (p < 0.000). In the nursing homes, large differences were observed with environmental contamination as common denominator. Most remarkable were the difference in Extended Spectrum Beta-Lactamase Enterobacteriaceae (ESBL-E) prevalence (mean 11%, range 0–21%). Conclusion The bundle approach and visualization of the IRIS makes it a useful infection prevention tool providing standardization and transparency. Targeted interventions can be started based on the results of the improvement plot and repeated IRIS can show the effect of interventions. In that way, a quality control cycle with continuous improvement can be achieved.

Country
Netherlands
Keywords

Rehabilitation Centers/standards, Cross Infection/prevention & control, Infectious and parasitic diseases, RC109-216, Antimicrobial resistance, Anti-Infective Agents, Risk Factors, Infection prevention, Hospitals/standards, Prevalence, Drug Utilization/standards, Pharmacology (medical), Hand Hygiene, Netherlands, Cross Infection, Research Support, Non-U.S. Gov't, Enterobacteriaceae Infections, Reference Standards, Quality Improvement, Hospitals, Benchmarking, Infectious Diseases, Infections/drug therapy, Anti-Infective Agents/standards, Risk Management/standards, Microbiology (medical), Health Personnel, Netherlands/epidemiology, Guidelines, Infections, Rehabilitation Centers, beta-Lactamases, Enterobacteriaceae Infections/epidemiology, Enterobacteriaceae, Drug Resistance, Bacterial, Journal Article, Humans, Quality Indicators, Health Care, Benchmarking/standards, Infection Control, Enterobacteriaceae/pathogenicity, Research, Public Health, Environmental and Occupational Health, Drug Utilization, Nursing Homes, Infection Control/standards, Hand Hygiene/standards

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    20
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
20
Top 10%
Top 10%
Top 10%
Green
gold