
In the context of face recognition systems, liveness test is a binary classification task aiming at distinguishing between input images that come from real people's faces and input images that come from photos or videos of those faces, and presented to the system's camera by an attacker. In this paper, we train the state-of-the-art, general purpose deep neural network ResNet for liveness testing, and measure the effect on its performance of adversarial attacks based on the manipulation of the saturation component of the imposter images. Our findings suggest that higher saturation values in the imposter images lead to a decrease in the network's performance. Next, we study the relationship between the proposed adversarial attacks and corresponding direct presentation attacks. Initial results on a small dataset of processed images which are then printed on paper or displayed on an LCD or a mobile phone screen, show that higher saturation values lead to higher values in the network's loss function, indicating that these colour manipulation techniques can indeed be converted into enhanced presentation attacks.
CCS Concepts: Computing methodologies --> Computer vision tasks; Image manipulation
Computer Graphics and Visual Computing (CGVC)
Latifah Abduh and Ioannis Ivrissimtzis
Short Papers
149
152
Computer vision tasks, 006, Image manipulation, Computing methodologies
Computer vision tasks, 006, Image manipulation, Computing methodologies
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
