Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Durham Research Onli...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Durham Research Online
Part of book or chapter of book . 2019 . Peer-reviewed
DBLP
Conference object
Data sources: DBLP
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Colour Processing in Adversarial Attacks on Face Liveness Systems

Authors: Latifah Abduh; Ioannis P. Ivrissimtzis;

Colour Processing in Adversarial Attacks on Face Liveness Systems

Abstract

In the context of face recognition systems, liveness test is a binary classification task aiming at distinguishing between input images that come from real people's faces and input images that come from photos or videos of those faces, and presented to the system's camera by an attacker. In this paper, we train the state-of-the-art, general purpose deep neural network ResNet for liveness testing, and measure the effect on its performance of adversarial attacks based on the manipulation of the saturation component of the imposter images. Our findings suggest that higher saturation values in the imposter images lead to a decrease in the network's performance. Next, we study the relationship between the proposed adversarial attacks and corresponding direct presentation attacks. Initial results on a small dataset of processed images which are then printed on paper or displayed on an LCD or a mobile phone screen, show that higher saturation values lead to higher values in the network's loss function, indicating that these colour manipulation techniques can indeed be converted into enhanced presentation attacks.

CCS Concepts: Computing methodologies --> Computer vision tasks; Image manipulation

Computer Graphics and Visual Computing (CGVC)

Latifah Abduh and Ioannis Ivrissimtzis

Short Papers

149

152

Country
United Kingdom
Related Organizations
Keywords

Computer vision tasks, 006, Image manipulation, Computing methodologies

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green