Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Structural and Multi...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Structural and Multidisciplinary Optimization
Article . 2022 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
TOBB ETU GCRIS Database
Other literature type
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Small failure probability: principles, progress and perspectives

Authors: Ikjin Lee; Ungki Lee; Palaniappan Ramu; Deepanshu Yadav; Gamze Bayrak; Erdem Acar;

Small failure probability: principles, progress and perspectives

Abstract

Design of structural and multidisciplinary systems under uncertainties requires estimation of their reliability or equivalently the probability of failure under the given operating conditions. Various high technology systems including aircraft and nuclear power plants are designed for very small probabilities of failure, and estimation of these small probabilities is computationally challenging. Even though substantial number of approaches have been proposed to reduce the computational burden, there is no established guideline to decide which approach is the best choice for a given problem. This paper provides a review of the approaches developed for small probability estimation of structural or multidisciplinary systems and enlists the criterion/metrics to choose the preferred approach amongst the existing ones, for a given problem. First, the existing approaches are categorized into the sampling-based, the surrogate-based, and statistics of extremes based approaches. Next, the small probability estimation methods developed for time-independent systems and the ones tailored for time-dependent systems are discussed, respectively. Then, some real-life engineering applications in structural and multidisciplinary design studies are summarized. Finally, concluding remarks are provided, and areas for future research are suggested.

Keywords

Cross-Entropy, Artificial Neural-Network, High reliability, Extreme-Value Distribution, Support Vector Regression, Rare event, Small failure probability, Subset Simulation Method, Adaptive Directional Stratification, Surrogate model, Rare-Event Probability, Machine learning, Structural Reliability Assessment, Monte-Carlo, Sampling, Extreme value statistics, Importance Sampling Method

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    18
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
18
Top 10%
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!