
doi: 10.1145/3639825
handle: 10138/591757
The Internet of Things (IoT) has revolutionized the connectivity of diverse sensing devices, generating an enormous volume of data. However, applying machine learning algorithms to sensing devices presents substantial challenges due to resource constraints and privacy concerns. Federated learning (FL) emerges as a promising solution allowing for training models in a distributed manner while preserving data privacy on client devices. We contribute SAFI , a semi-asynchronous FL approach based on clustering to achieve a novel in-cluster synchronous and out-cluster asynchronous FL training mode. Specifically, we propose a three-tier architecture to enable IoT data processing on edge devices and design a clustering selection module to effectively group heterogeneous edge devices based on their processing capacities. The performance of SAFI has been extensively evaluated through experiments conducted on a real-world testbed. As the heterogeneity of edge devices increases, SAFI surpasses the baselines in terms of the convergence time, achieving a speedup of approximately × 3 when the heterogeneity ratio is 7:1. Moreover, SAFI demonstrates favorable performance in non-independent and identically distributed settings and requires lower communication cost compared to FedAsync. Notably, SAFI is the first Java-implemented FL approach and holds significant promise to serve as an efficient FL algorithm in IoT environments.
Smart sensing, Computer and information sciences, Federated learning, Deep learning, Edge computing
Smart sensing, Computer and information sciences, Federated learning, Deep learning, Edge computing
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 9 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
