Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Advances in Engineer...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Advances in Engineering Software
Article . 2018 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Two-dimensional fracture modeling with the generalized/extended finite element method: An object-oriented programming approach

Authors: Mohammad Malekan; Leandro L. Silva; Felicio B. Barros; Roque L.S. Pitangueira; Samuel S. Penna;

Two-dimensional fracture modeling with the generalized/extended finite element method: An object-oriented programming approach

Abstract

Abstract This work presents an object-oriented implementation of the G/XFEM to model the crack nucleation and propagation in structures made of either linear or nonlinear materials. A discontinuous function along with the asymptotic crack-tip displacement fields are used to represent the crack without explicitly meshing its surfaces. Different approach are explained in detail that are used to capture the crack nucleation within the model and also determine the crack propagation path for various problems. Stress intensity factor and singularity of the localization tensor (which provides the classical strain localization condition) can be used to determine the crack propagation direction for linear elastic materials and nonlinear material models, respectively. For nonlinear material model, the cohesive forces acting on the crack plane are simulated in the enrichment process by incorporating a discrete constitutive model. Several algorithms and strategies have been implemented, within an object-oriented framework in Java, called INSANE. This implementation will be presented in detail by solving different two-dimensional problems, for both linear and nonlinear material models, in order to show the robustness and accuracy of the proposed method. The numerical results are compared with the reference solutions from the analytical, numerical or experimental results, where applicable.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    23
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
23
Top 10%
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!