
This paper introduces an extension to OpenMP3.0 enabling stream programming with minimal, incremental additions that seamlessly integrate into the current specification. The stream programming model decomposes programs into tasks and explicits the flow of data among them, thus exposing data, task and pipeline parallelism. It helps the programmers to express concurrency and data locality properties, avoiding non-portable low-level code and early optimizations. We survey the diverse motivations and constraints converging towards the design of our simple yet powerful language extension, and we present experimental results of a prototype implementation in a public branch of GCC 4.5. Copyright 2011 ACM.
Prototype implementations, Stream programming, Language extensions, Flow of data, Data locality, [INFO.INFO-PL] Computer Science [cs]/Programming Languages [cs.PL]
Prototype implementations, Stream programming, Language extensions, Flow of data, Data locality, [INFO.INFO-PL] Computer Science [cs]/Programming Languages [cs.PL]
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 27 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
