Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Orientation Hashcode and Articial Neural Network Based Combined Approach to Recognize Sign Language

Authors: null Arif-Ul-Islam; Shamim Akhter;

Orientation Hashcode and Articial Neural Network Based Combined Approach to Recognize Sign Language

Abstract

Hand sign recognition is an essential part in robot control, human computer interaction, communication with deaf or speech impaired people etc. where performance and time complexity are very important factors. Numerous researches are conducted to offer solutions for sign language classification. Among them, orientation based hashcode (OBH) model recognizes sign images at a lower time but with A lower accuracy. In this paper, we propose a system which consists of OBH, additional feature extraction and machine learning method. It is able to classify sign language finger spelling alphabets efficiently within a short time. Feature vector using Gabor filter and number of fingertips are used as attributes alongside orientation based hashcode for classification through Artificial Neural Network (ANN). Before feeding features into ANN model, Principle Component Analysis (PCA) is used to omit the redundant features. The dataset contains 576 American Sign Language (ASL) alphabet sign images (both RGB and depth images) of 24 different categories which are captured by Microsoft Kinect sensor. The proposed methodology is proved to be 95.8% accurate against randomly selected test dataset and 93.85% accurate using 9-fold validation.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!