Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://doi.org/10.2...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.2478/arsa-2...
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Hal
Article . 2024
License: CC BY
Data sources: Hal
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ePLUS
Article . 2023
License: CC BY
Data sources: ePLUS
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Time Series Analysis of Landsat Images for Monitoring Flooded Areas in the Inner Niger Delta, Mali

Authors: Lemenkova, Polina; Debeir, Olivier;

Time Series Analysis of Landsat Images for Monitoring Flooded Areas in the Inner Niger Delta, Mali

Abstract

Abstract This paper presents an R-based approach to mapping dynamics of the flooded areas in the Inner Niger Delta (IND), Mali, using time series analysis of Landsat 8–9 satellite images. As the largest inland wetland in West Africa, the habitats of IND offers high potential for biodiversity of the flood-dependent eco systems. IND is one of the most productive areas in West Africa. Mapping flooded areas based on satellite images enables to provide strategies for land management and rice planting and modelling vegetation types of IND. Our approach is based on using libraries of R programming language for processing six Landsat images, and each image was taken on November from 2013 to 2022. By capturing spatial and temporal structures of the satellite images on 2013, 2015, 2018, 2020, 2021 and 2022, the remote sensing data are combined to yield estimates of landscape dynamics that is temporally coherent, while helping to analyse fluctuations of spatial extent in fluvial wetlands caused by the hydrological processes of seasonal flooding. Further, by allowing packages of R to support image processing, an approach to mapping vegetation by NDVI, SAVI and EVI indices and visualising changes in distribution of different land cover classes over time is realised. In this context, processing Earth observation data by advanced scripting tools of R language provides new insights into complex interlace of climate-hydrological processes and vegetation responses. Our study contributes to the sustainable management of natural resources and improving knowledge on the functioning of IND ecosystems in Mali, West Africa.

Keywords

[SDE] Environmental Sciences, Télédétection, Techniques d'imagerie et traitement d'images, Satellite Image, Westafrika, [INFO] Computer Science [cs], Satellitenbild, R language, Remote Sensing, West Africa, Géographie physique, Ecologie [végétale], Ecologie, Cartographie, Programmation et méthodes de simulation, Vegetationsindex, Computer science, Fernerkundung, Sciences de la terre et du cosmos, R language; Remote Sensing; Satellite Image; Vegetation Index; West Africa, [SDE.BE] Environmental Sciences/Biodiversity and Ecology, [INFO.INFO-TI] Computer Science [cs]/Image Processing [eess.IV], [SDU.STU] Sciences of the Universe [physics]/Earth Sciences, R-Sprache, Géographie rurale, Programmation du calcul numérique, Vegetation Index, Sciences exactes et naturelles

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Top 10%
Average
Top 10%
Green
hybrid