Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Archive ouverte UNIG...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Clinical Neurophysiology
Article . 2009 . Peer-reviewed
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Imaging Compatible Electrodes for Continuous Electroencephalogram Monitoring in the Intensive Care Unit

Authors: Vulliemoz, Serge; Perrig, Stephen; Pellise, Daniel; Vargas Gomez, Maria Isabel; Gasche, Yvan; Ives, John R.; Seeck, Margitta;

Imaging Compatible Electrodes for Continuous Electroencephalogram Monitoring in the Intensive Care Unit

Abstract

Continuous electroencephalogram in the intensive care unit is increasingly recognized as an important diagnostic and prognostic tool in critically ill patients. Metal disc electrodes or subdermal needle electrodes are neither computed tomography nor magnetic resonance imaging compatible. Their frequent replacement required for imaging purposes is time consuming and contributes to scalp breakdown. We have developed and report on two new types of imaging compatible electrodes. The subdermal wire electrode and the silver-epoxy-coated conductive plastic electrode are magnetic resonance imaging, computed tomography, and angiogram compatible. Moreover, the subdermal wire electrode does not require any daily maintenance. The electrodes were used on a total of 24 intensive care unit patients (subdermal wire electrode = 20, conductive plastic electrodes = 4) who required continuous electroencephalogram. During an average of 62.2 +/- 44 hours of electroencephalogram recording, 54% of the patients underwent imaging procedures (nine magnetic resonance imagings, five computed tomographic scans, and two angiograms) of good quality without the need to remove/replace the electrodes. The continuous electroencephalogram revealed epileptogenic activity that was not detected on standard 20-minute recordings in 28% of patients screened, with electrographic seizures in 11%. These two types of imaging compatible electrodes offer definite advantages in clinical practice. The combined diagnostic information of continuous electroencephalogram and easy-to-plan imaging yields important results and improves the clinical management and treatment of intensive care unit patients.

Related Organizations
Keywords

Male, 616.8, Electroencephalography, Monitoring, Physiologic/*instrumentation, Middle Aged, Electroencephalography/*instrumentation, Magnetic Resonance Imaging, Intensive Care Units, *Electrodes, 617, Humans, Female, *Intensive Care Units, Tomography, X-Ray Computed, Electrodes, Magnetic Resonance Angiography, Monitoring, Physiologic, ddc: ddc:617, ddc: ddc:616.8

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    20
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
20
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!