
In this paper, we introduce and study polyharmonic functions on trees. We prove that the discrete version of the classical Riquier problem can be solved on trees. Next, we show that the discrete version of a characterization of harmonic functions due to Globevnik and Rudin holds for biharmonic functions on trees. Furthermore, on a homogeneous tree we characterize the polyharmonic functions in terms of integrals with respect to finitely-additive measures (distributions) of certain functions depending on the Poisson kernel. We define polymartingales on a homogeneous tree and show that the discrete version of a characterization of polyharmonic functions due to Almansi holds for polymartingales. We then show that on homogeneous trees there are 1-1 correspondences among the space of n th-order polyharmonic functions, the space of n th-order polymartingales, and the space of n -tuples of distributions. Finally, we study the boundary behavior of polyharmonic functions on homogeneous trees whose associated distributions satisfy various growth conditions.
polyharmonic functions, homogeneous tree, polymartingales, Biharmonic and polyharmonic equations and functions in higher dimensions, Discrete potential theory, biharmonic functions, Trees
polyharmonic functions, homogeneous tree, polymartingales, Biharmonic and polyharmonic equations and functions in higher dimensions, Discrete potential theory, biharmonic functions, Trees
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 12 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
