Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
VBN
Research . 2023
Data sources: VBN
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Wireless Communications
Article . 2025 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
VBN
Article . 2025
Data sources: VBN
ZENODO
Journal . 2025
License: CC BY
Data sources: Datacite
https://dx.doi.org/10.48550/ar...
Article . 2023
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
ZENODO
Journal . 2025
License: CC BY
Data sources: Datacite
versions View all 12 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Autonomous RISs and Oblivious Base Stations: The Observer Effect and Its Mitigation

Authors: Croisfelt, Victor; Devoti, Francesco; Saggese, Fabio; Sciancalepore, Vincenzo; Costa-Pérez, Xavier; Popovski, Petar;

Autonomous RISs and Oblivious Base Stations: The Observer Effect and Its Mitigation

Abstract

Autonomous reconfigurable intelligent surfaces (RISs) offer the potential to simplify deployment by reducing the need for real-time remote control between a base station (BS) and an RIS. However, we highlight two major challenges posed by autonomy. The first is implementation complexity, as autonomy requires hybrid RISs (HRISs) equipped with additional onboard hardware to monitor the propagation environment and perform local channel estimation (CHEST), a process known as probing. The second challenge, termed probe distortion, reflects a form of the observer effect: during probing, an HRIS can inadvertently alter the propagation environment, potentially disrupting the operations of other communicating devices sharing the environment. Although implementation complexity has been extensively studied, probe distortion remains largely unexplored. To further assess the potential of autonomous RISs, this paper comprehensively and pragmatically studies the fundamental trade-offs posed by these challenges collectively. In particular, we examine the robustness of an HRIS-assisted massive multiple-input multiple-output (mMIMO) system by considering its critical components and stringent conditions. The latter include: (a) two extremes of implementation complexity, represented by minimalist operation designs of two distinct HRIS hardware architectures, and (b) an oblivious BS that fully embraces probe distortion. To make our analysis possible, we propose a physical-layer orchestration framework that aligns HRIS and mMIMO operations. We present empirical evidence that autonomous RISs remain promising under stringent conditions and outline research directions to deepen probe distortion understanding.

Keywords

Networking and Internet Architecture (cs.NI), Signal Processing (eess.SP), FOS: Computer and information sciences, Complexity theory, Computer Science - Information Theory, Information Theory (cs.IT), Distortion, Reflection, Systems and Control (eess.SY), Vectors, Electrical Engineering and Systems Science - Systems and Control, Computer Science - Networking and Internet Architecture, Hardware, Remote control, Reconfigurable intelligent surface (RIS), FOS: Electrical engineering, electronic engineering, information engineering, Probes, Reconfigurable intelligent surfaces, Electrical Engineering and Systems Science - Signal Processing, Human-robot interaction, intelligent reflective surfaces (IRSs), hybrid reconfigurable intelligent surface (HRIS), massive multiple-input multiple-output (MIMO), Real-time systems

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
Related to Research communities