Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The Influence of Parallel Programming Interfaces on Multicore Embedded Systems

Authors: Arthur Francisco Lorenzon; Anderson Luiz Sartor; Márcia C. Cera; Antonio Carlos Schneider Beck;

The Influence of Parallel Programming Interfaces on Multicore Embedded Systems

Abstract

Thread-Level Parallelism (TLP) exploitation for embedded systems has been a challenge for software developers: while it is necessary to take advantage of the availability of multiple cores, it is also mandatory to consume less energy. To speed up the development process and make it as transparent as possible, software designers use Parallel Programming Interfaces (PPIs). However, as will be shown in this paper, each PPI implements different ways to exchange data using shared memory regions, influencing performance, energy consumption and Energy-Delay Product (EDP), which varies across different embedded processors. By evaluating four PPIs and three multicore processors (ARM A8, A9 and Intel Atom), we demonstrate that by simply switching PPI it is possible to save up to 59% in energy consumption and achieve up to 85% of EDP improvements, in the most significant case. We also show that the efficiency (i.e., The best possible use of the available resources) decreases as the number of threads increases in almost all cases, but at distinct rates.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!