Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Mathemati...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Mathematical Cryptology
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2021
License: CC BY SA
Data sources: Datacite
https://dx.doi.org/10.5167/uzh...
Other literature type . 2022
Data sources: Datacite
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A deterministic algorithm for the discrete logarithm problem in a semigroup

Authors: Tinani, Simran; Rosenthal, Joachim;

A deterministic algorithm for the discrete logarithm problem in a semigroup

Abstract

Abstract The discrete logarithm problem (DLP) in a finite group is the basis for many protocols in cryptography. The best general algorithms which solve this problem have a time complexity of O ( N log N ) O\left(\sqrt{N}\log N) and a space complexity of O ( N ) O\left(\sqrt{N}) , where N N is the order of the group. (If N N is unknown, a simple modification would achieve a time complexity of O ( N ( log N ) 2 ) O\left(\sqrt{N}{\left(\log N)}^{2}) .) These algorithms require the inversion of some group elements or rely on finding collisions and the existence of inverses, and thus do not adapt to work in the general semigroup setting. For semigroups, probabilistic algorithms with similar time complexity have been proposed. The main result of this article is a deterministic algorithm for solving the DLP in a semigroup. Specifically, let x x be an element in a semigroup having finite order N x {N}_{x} . The article provides an algorithm, which, given any element y ∈ ⟨ x ⟩ y\in \langle x\rangle , provides all natural numbers m m with x m = y {x}^{m}=y , and has time complexity O ( N x ( log N x ) 2 ) O\left(\sqrt{{N}_{x}}{\left(\log {N}_{x})}^{2}) steps. The article also gives an analysis of the success rates of the existing probabilistic algorithms, which were so far only conjectured or stated loosely.

Related Organizations
Keywords

FOS: Computer and information sciences, discrete logarithm problem, Group Theory (math.GR), 68q25, Computational Complexity (cs.CC), semigroups, 510 Mathematics, 2604 Applied Mathematics, 1706 Computer Science Applications, complexity of algorithms, QA1-939, FOS: Mathematics, 94a60, Applied Mathematics, 20m13, Computer Science Applications, 10123 Institute of Mathematics, Computational Mathematics, Computer Science - Computational Complexity, 2605 Computational Mathematics, Mathematics - Group Theory, Mathematics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green
gold